Interpreting latent variables in factor models via convex optimization

نویسندگان

  • Armeen Taeb
  • Venkat Chandrasekaran
چکیده

Latent or unobserved phenomena pose a significant difficulty in data analysis as they induce complicated and confounding dependencies among a collection of observed variables. Factor analysis is a prominent multivariate statistical modeling approach that addresses this challenge by identifying the effects of (a small number of) latent variables on a set of observed variables. However, the latent variables in a factor model are purely mathematical objects that are derived from the observed phenomena, and they do not have any interpretation associated to them. A natural approach for attributing semantic information to the latent variables in a factor model is to obtain measurements of some additional plausibly useful covariates that may be related to the original set of observed variables, and to associate these auxiliary covariates to the latent variables. In this paper, we describe a systematic approach for identifying such associations. Our method is based on solving computationally tractable convex optimization problems, and it can be viewed as a generalization of the minimum-trace factor analysis procedure for fitting factor models via convex optimization. We analyze the theoretical consistency of our approach in a high-dimensional setting as well as its utility in practice via experimental demonstrations with real data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex Two-Layer Modeling

Latent variable prediction models, such as multi-layer networks, impose auxiliary latent variables between inputs and outputs to allow automatic inference of implicit features useful for prediction. Unfortunately, such models are difficult to train because inference over latent variables must be performed concurrently with parameter optimization—creating a highly non-convex problem. Instead of ...

متن کامل

Latent Variable Graphical Model Selection via Convex Optimization1 by Venkat Chandrasekaran,

Suppose we observe samples of a subset of a collection of random variables. No additional information is provided about the number of latent variables, nor of the relationship between the latent and observed variables. Is it possible to discover the number of latent components, and to learn a statistical model over the entire collection of variables? We address this question in the setting in w...

متن کامل

Convex optimization methods for graphs and statistical modeling

An outstanding challenge in many problems throughout science and engineering is to succinctly characterize the relationships among a large number of interacting entities. Models based on graphs form one major thrust in this thesis, as graphs often provide a concise representation of the interactions among a large set of variables. A second major emphasis of this thesis are classes of structured...

متن کامل

Learning Latent Groups with Hinge-loss Markov Random Fields

Probabilistic models with latent variables are powerful tools that can help explain related phenomena by mediating dependencies among them. Learning in the presence of latent variables can be difficult though, because of the difficulty of marginalizing them out, or, more commonly, maximizing a lower bound on the marginal likelihood. In this work, we show how to learn hinge-loss Markov random fi...

متن کامل

Discussion : Latent Variable Graphical Model Selection via Convex Optimization

1. Introduction. We would like to congratulate the authors for their refreshing contribution to this high-dimensional latent variables graphical model selection problem. The problem of covariance and concentration matrices is fundamentally important in several classical statistical methodolo-gies and many applications. Recently, sparse concentration matrices estimation had received considerable...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Program.

دوره 167  شماره 

صفحات  -

تاریخ انتشار 2018